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by
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The aim of this thesis is to focus on a numerical study of laminar mixed convection of

nanofluid flow over a backward facing step for different inclination angles of magnetic field

with internal heat generation. The bottom wall of the channel downstream of the step is

isothermally heated and the other walls of the channel are assumed to be adiabatic. The in-

fluence of the heat generation/absorption parameter, Reynolds number, Hartmann number,

solid volume fraction of the nanoparticle on the fluid flow and heat transfer are numerically

investigated for different orientation angles of the magnetic field. Dimensionless governing

equations are discretized by using Galerkin weighted residual method of Finite element for-

mulation. The obtained results are presented in terms of streamlines and isotherms for an

inclination angles of magnetic field ranges from 0◦ to 90◦. The results show that the average

Nusselt number decreases with the increasing of heat generation parameter. It is also ob-

served that average heat transfer increases with an increase in Reynolds number. Moreover,

Nusselt number augments with an enhancement in inclination angle of magnetic field.
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Chapter 1

Introduction

Backward facing step flow has long been studied and gained considerable attention in vari-

ous fields of engineering with applications such as electronic devices, airfoil, combustor and

collector of power system [1]. Moreover, mixed convective nanofluid flow and heat transfer

attract the interest for its significance and wide practical applications in science and engi-

neering. Mixed convection is one of the mode of the heat transfer that occurs when natural

convection and forced convection mechanism act together to transfer heat. It can also be

defined as the process where both pressure forces and buoyancy forces interact. Most of the

time, it has been seen in very high power output device that the forced convection is not

enough to dissipate all of the heat necessary. At this moment, combining natural convection

with forced convection would provide the required results. Nuclear technology and few as-

pects of electronic cooling are the examples of these processes.

Mulaweh [2] investigated the laminar mixed convection flow over backward and forward

facing step and presented the effect of various parameters, e.g., Reynolds number, angle of

inclination, Prandtl number, ratio expansion, buoyancy force on the flow and temperature

difference between the free stream and the heated wall. It was observed that the local Nusselt

number decreases with an increase in buoyancy opposing force in the laminar non circulating

flow downstream of the step while the reverse trend was observed for recirculating flow re-

gion. The effect of buoyancy-assisting force on reattachment length downstream of the step

was also observed in this paper. Brkley at al. [3] observed the linear stability of backward

facing step flow for Reynolds number between 450 - 1050. The results show that up to a

Reynolds number of 1050, the two dimensional flow over the backward facing step is linearly

stable. The velocity distribution and reattachment length with the help of Laser-Dopplar

measurements for downstream of backward facing step was investigated by Armaly at al.

[4]. He conducted the result for laminar, transitional and turbulent flow of air in Reynolds

number between 70 and 8000.

1



Introduction 2

In heat transfer process, nano-sized particles are added in base fluid to obtain better thermal

properties. A nanofluid is a fluid containing nanometer-sized particles called nanoparticles.

Common base fluids are water, oil, ethylene glycol etc. Nanofluid improve the heat transfer

rate of the base fluid. Many researchers conducted the study of nanofluid over backward fac-

ing step. Nada [5] numerically investigated the heat transfer over the backward facing step

using different types of nanofluid. It was noticed that the nanoparticles having high ther-

mal conductivity outside the recirculation zones have more enhancement on Nusselt number.

However, within recirculation zone, nanoparticles having low thermal conductivity have bet-

ter enhancement on heat transfer. The increase in volume fraction of nanoparticles causes

the increase in average Nusselt number. The similar is carried out by many researchers [6, 7].

Kherbeet at al. [8] have made numerical investigation of the laminar mixed convection over

micro-scale backward facing step with nanofluid for three dimensions. Different types of

nanoparticle including Al2O3, CuO, SiO2 and ZnO were used. Their diameter ranges from

25 nm to 70 nm. The Reynolds number used were given the values from the interval [50,

175]. It was noticed that the heat transfer increases with the increase of volume fraction and

Reynolds number. The results show that the nanofluid having SiO2 nanoparticles has maxi-

mum heat transfer value. It was observed that the heat transfer rate increases by decreasing

the diameter of nanoparticles.

Aswadi at al. [9] numerically investigated the laminar flow of forced convection of nanofluid

over backward facing step using finite volume method where Reynolds number used were

given the values from the interval [50, 175]. When Reynolds number increases, the reattach-

ment point is found to move downstream far from the step. It is noticed that nanofluid of

SiO2 nanoparticles has highest velocity as compared to the other nanofluids while nanofluid

having Au nanoparticles has the lowest velocity. Oztop and Selimefendigil [10] investigated

the mixed convection heat transfer characteristics for lid-driven cavity within square en-

closure heated by corner heaters. It was found that, by increasing the Hartmann number,

the heat transfer rate decreases. Pirmohamdi and Ghassemi [11] have studied the steady,

laminar, natural convection flow with magnetic field on heat transfer inside a tilted square

enclosure. He found that when the Hartmann number increases, the convective heat transfer

reduces. Moreover, it was found that value of Nusselt number depends strongly upon the

inclination angles for the relatively small value of Hartman number and Nusselt number in-

creases when φ increases upto 45◦.

The study of behavior of electrical conducting fluid in the presence of electromagnetic field

is called magnetohydrodynamics (MHD). It is an important scientific branch and many re-

searchers have done a lot of work on it. In many industrial applications such as liquid metals,
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geothermal energy extraction, plasma, purification of molten metals from non-metallic inclu-

sions and in many other applications, magnetohydrodynamics (MHD) flow of an electrically

conducting fluid with the heat transfer can be observed. Abbasi and Nassrallah [12] studied

the MHD laminar flow of viscous incompressible fluid for a backward facing step and per-

formed the numerical simulations for Reynolds number less than 380 with Prandtl number

0.02 while taking Stuart number from 0 to 0.2. It was found that the heat transfer is sig-

nificantly enhanced by the magnetic field in the case of high Prandtl number. Mehrez at

al. [13] studied the effect of magnetic field on mixed convection of Cu-water nanofluid. The

governing parameters involved were the Reynolds number, Hartmann number, Richardson

number, magnetic field inclination and volume fraction of nanoparticle. It was observed that

heat transfer exchange increases by increasing the nanoparticles volume fraction.

Zheng at al. [14] numerically studied the two-dimensional mixed convection in a lid-driven

cavity with circular cylinder. They used the Immersed-boundary method which is based

on the finite volume method. It was found that when the Richardson numbers is 10 with

Reynolds number 100, the effect of cylinder position in the cavity on Nusselt number dis-

tribution was not strong. It was also observed that when the Richardson number decreases

to 0.4 and 0.1 by increasing the Reynolds number up to 500 and 1000, the effect of cylinder

position in cavity on the Nusselt number distribution becomes significant. Saha at al. [15] in-

vestigated the mixed convection flow and heat transfer in lid-driven cavity with wavy bottom

surface. The mathematical model was solved by using Galerkin weighted residual method

of finite element formulation. The effect of different parameters, e.g., Reynolds number,

Grashof number and number of undulation on heat transfer and flow structure was observed.

It was found that the heat transfer and flow characteristics inside the cavity were strongly

dependent on the number of undulation, Grashof number and Reynolds number.

Heat transfer and mixed convection play an important role in science and engineering fields.

In recent years, technology of nanofluid has emerged as a new enhanced heat transfer ap-

plication. Traditional fluids which were being used for the heat transfer application such

as mineral oil, water and ethylene glycol have rather low thermal conductivity. Nanofluid

with relatively higher thermal conductivity gained huge interest for researchers due to high

potential in heat transfer. Different cases are discussed containing the fluid with nanoparti-

cles such as TiO2, Cu and Al2O3 in various irregular shaped geometries. It is compulsory

to study the average Nusselt number for a wavy surface because irregular or wavy surface

is often encountered in various applications, e.g., cooling system of micro devices, electrical

machinery and many geophysical applications. Moreover, after studying the different induc-

tion of copper nanoparticles in fluid flow inside the geometry with inclined cavity shows the

enhancement of heat transfer rate with increment in the solid volume fraction φ. A similar

interest is newly established in recent few decades where heat transfer exchange is studied
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with internal heat generation/absorption applied on different models. Different implemen-

tations of convective heat transfer of nanofluids using internal heat generation or absorption

have been investigated in the last few decades.

Nasrin at al. [16] presented the numerical structure of mixed convection heat transfer in

lid driven cavity filled with Cu-water nanofluid with internal heat generation. They consid-

ered the value of the heat generation parameter in the range 0 - 20 and the effect of pertinent

parameters, e.g., solid volume fraction, Richardson number and magnetic field inclination on

the flow and heat transfer are presented. The induced results show that Ri plays a dominant

role on the heat transfer exchange and an increase in solid volume fraction depicts a dom-

inant impact on the flow pattern. They concluded that by increasing the heat generation

parameter, the average Nusselt number decreases. Pavithra and Gireesha [17] investigated

the boundary layer flow and heat transfer of dusty fluid over an exponentially stretching

surface in the presence of viscous dissipation and internal heat generation/absrption. His

study clearly show that temperature in the case of heat source (i.e. generation) is higher

than that in the case of sink parameter (absorption). Extension to that, Hamad and Pop [18]

theoretically studied the steady boundary layer flow near the stagnation point on a perme-

able stretching sheet in porous medium saturated with nanofluid in the presence of internal

heat generation or absorption. The nanofluid model proposed by Tiwari and Das [19] is used

and very successfully applied by many researchers.

Natural convection cooling of a localized heat source at the bottom of nanofluid filled enclo-

sure was analyzed by Ghasemi and Aminossadati [20]. A similar study has been carried out

by many researchers. Ogut [21] studied the natural convection of water based nanofluid in

inclined enclosures with the heat transfer using the expression for calculating the effect of

thermal conductivity of solid liquids mixture. Samad and Mohebujjaman [22] worked on heat

and mass transfer for free convective flow along the vertical stretching sheets in the presence

of magnetic field with heat generation. Again, Elbashbeshy and Aldawody [23] investigated

the unsteady stretching surface involved in porous medium with heat flux variable in the

contribution of sink and heat source.

1.1 Thesis Contributions

The aim of this thesis is to examine the mixed convective nanofluid flow over backward facing

step for various inclination angle of magnetic field occupied with Cu-water nanoparticles with

the contribution of internal heat generation/absorption. The governing equations are solved

by using the Galerkin finite element method. The streamlines and isotherms are formed,

heat transfer characteristics is obtained for an inclination angle of magnetic field ranging
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from 0◦ to 90◦. The effect of Reynolds number, Hartman number, inclination of magnetic

field, solid volume fraction and heat generation parameter on the temperature and velocity

field are shown graphically and analyzed in detail.

1.2 Thesis outline

We divided this thesis into five chapters.

The brief introduction of the present work is given in Chapter 1.

Method of solution of the problem and basic definitions are presented in Chapter 2.

Numerical study of mixed convection of nanofluid flow over backward facing step under

different inclination angle of magnetic field is presented in Chapter 3.

The effect of internal heat generation/absorption on mixed convective nanofluid flow is dealt

in Chapter 4.

Conclusion of the present work is summarized in Chapter 5.



Chapter 2

Fundamental Concepts and

Governing Equations

2.1 Some basic definitions

Definition 2.1.1. (Fluid)

Fluid is a substance that deforms continuously under the influence of shear stress applied on

it. It has zero shear force applied to it. It changes its shape at a steady rate when acted

upon by a force.

Definition 2.1.2. (Fluid mechanics)

Fluid mechanics is the branch of physics that deals with the study of laws of force and

properties of fluid and the effect of forces on it. It is divided into two branches, i.e., fluid

dynamics and fluid statics.

Definition 2.1.3. (Fluid dynamics)

Fluid dynamic is the branch of fluid mechanics which deals with the study of fluids in motion.

Definition 2.1.4. (Fluid statics)

Fluid statics is the branch of fluid mechanics which deals with the study of fluids at rest.

6



Fundamental Concepts and Governing Equations 7

Definition 2.1.5. (Pressure)

The amount of applied force per unit area is called pressure. It is denoted by P and mathe-

matically, it can be written as

P =
F

A
, (2.1)

where F and A denote the applied force and area of the surface, respectively.

Definition 2.1.6. (Density)

It is defined as the mass per unit volume. The dimension of density is [ML−3] and its unit

is kg/m3. It is denoted by ρ and mathematically, it can be written as

ρ =
m

V
, (2.2)

where m and V are the mass and volume of the material, respectively.

Definition 2.1.7. (Stress)

Stress is defined as the force per unit area within the distortable body. Mathematically, it

can be written as

ρ =
F

A
, (2.3)

where F shows the force and A represents area. There are normal stresses and tangential

stresses.

Definition 2.1.8. (Normal stress)

Normal stress is the component of stress in which a force act normal to the unit surface area.

Definition 2.1.9. (Tangential stress)

In tangential stress, force acts parallel to the unit surface area, e.g., shear stress.

Definition 2.1.10. (Viscosity)

The extent which measures the resistance of fluid tending to cause the fluid to flow is called

viscosity. It is denoted by µ and mathematically, it can be expressed by

µ = shear stress
shear strain .
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Definition 2.1.11. (Kinematic viscosity)

Kinematic viscosity is the ratio between the dynamic density and viscosity. Symbolically, it

can be written as ν and mathematically, it is expressed by

ν =
µ

ρ
, (2.4)

where µ denotes the dynamic viscosity and ρ is the density.

Definition 2.1.12. (Dynamic viscosity)

Dynamic viscosity is the measure of internal resistance. It is denoted by µ and expressed by

µ = τ

(
dy

dc

)
, (2.5)

where dy is the unit distance between layers and dc is the unit velocity.

Definition 2.1.13. (Magnetohydrodynamics)

The branch of dynamics which deal with the study of magnetic properties of electrically

conducting fluid is called magnetohydrodynamics such as plasma, liquid metal and salt water

etc.

2.2 Classification of fluids

Definition 2.2.1. (Ideal fluid)

The fluid which is incompressible and has no viscosity (µ = 0) is called an ideal fluid. It

is also called inviscid fluid. There is no existence of shear force because the viscosity is

vanishing in an ideal fluid.

τyx = µ

(
du

dy

)
, (2.6)

where τyx is shear stress.

Definition 2.2.2. (Real fluid)

The fluid which is compressible in nature and has some viscosity is said to be a real or viscous

fluid. As the fluid moves, certain amount of resistance is always offered by these fluids.
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Definition 2.2.3. (Nanofluid)

The fluid containing nanometer-sized particles is called nanofluid. The nanoparticles are

typically made of metals, oxides or carbon nanotubes. Examples of base fluid include water,

ethylene glycol etc.

Definition 2.2.4. (Newtonian fluid)

Newtonian fluid is defined as the fluid for which shear stress is directly and linearly propor-

tional to the deformation rate. Newtonian fluids have linear relationship between the shear

stress and deformation rate. In other words, the fluids which satisfy the Newton’s law of

viscosity are called Newtonian fluids. The common examples of such fluids are water, silicon

oil and gasoline etc. Shear stress of Newtonian fluid is mathematically defined as

τyx = µ
du

dy
, (2.7)

where τyx is the shear stress, u denotes x-component of velocity and µ denotes dynamic

viscosity.

Definition 2.2.5. (Non-Newtonian fluid)

In Non-newtonian fluids, shear stress is not directly proportional to the rate of deformation.

In other words, the fluid which does not satisfy the Newton law of viscosity is said to be non

newtonian fluid. Examples of Non-newtonian fluid are shampoo, grease, paint, blood and

melt polymer etc. Mathematically, it can be written as

τxy ∝
(
du

dy

)m
, m 6= 1,

τxy = ν

(
du

dy

)
, ν = j

(
du

dy

)m−1

. (2.8)

where ν denotes the apparent viscosity, m is the index of flow performance and the constancy

index is j.

2.3 Types of Flow

Definition 2.3.1. (Flow) An object exhibits the flow if unlike forces lead to an unbounded

distortion. Different types of flow are given as follows:
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Definition 2.3.2. (Laminar flow)

The flow in which streamlines are parallel to each other is said to be laminar. Smoke rising

is the example of laminar flow. If we observe the smoke rising from cigarette, for the first

few seconds the flow is laminar but after few second, it becomes turbulent.

Definition 2.3.3. (Turbulent flow)

The flow in which streamlines intersect each other is said to be turbulent. This type of flow

cannot be handled easily.

Definition 2.3.4. (Uniform flow)

If the velocity of the flow has the same direction as well as magnitude during the motion of

fluid, then it is called uniform flow. Mathematically, it can be written as

∂V

∂s
= 0, (2.9)

where V is the velocity and s is the displacement in any direction.

Definition 2.3.5. (Non uniform flow)

If the velocity is not same at every point in the fluid at a given instant, then it is said to be

non uniform flow. It may be steady or unsteady. Mathematically, it is expressed as

∂V

∂s
6= 0, (2.10)

where V is the velocity and s is the displacement.

Definition 2.3.6. (External flow)

The flow which is not bounded by the solid surface is called external flow. The flow of water

in the ocean or in the river is the example of the external flow.

Definition 2.3.7. (Internal flow)

The flow which is bounded by the solid surface is called internal flow. The example of such

flow is the flow in the glass or in a pipe .
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Definition 2.3.8. (Steady flow)

The flow having no change with time is said to be steady flow.

Mathematically, it can be written as
dη∗

dt
= 0, (2.11)

where η∗ is fluid property.

Definition 2.3.9. (Unsteady flow)

The flow having change with time is known as unsteady flow. Mathematically, it can be

written as
dη∗

dt
6= 0, (2.12)

where η∗ is fluid property.

Definition 2.3.10. (Compressible flow)

The flow in which the density with respect to the substance variable varies during the flow

is said to be compressible flow. Mathematically, it is expressed by

ρ(x, y, z, t) 6= c, (2.13)

where ’c’ is a constant.

Definition 2.3.11. (Incompressible flow)

The flow in which the density remains same throughout during the flow is called incompress-

ible flow. Mathematically, it can be written as

ρ(x, y, z, t) = c, (2.14)

where ’c’ is a constant.

2.4 Heat transfer Mechanism

There are three types of heat transfer

Definition 2.4.1. (Conduction)

The flow of heat through solid or liquid by the intersection of free electrons and molecules is

said to be conduction. In other words, the heat is transfered between those objects that are
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in physical constant is called conduction. Mathematically, it can be written as

q = −kA
(

∆T

∆n

)
, (2.15)

where k denotes the constant of the thermal conductivity and ∆T
∆n denote the gradient of the

temperature respectively.

Definition 2.4.2. (Convection)

A process in which heat transfer occurs due to the movement of group of molecules within

the fluid. Gases and liquids are the examples of convection fluid. It takes place through

diffusion or advection. Mathematically, it is expressed as

q = hA(Ts − T∞), (2.16)

where h, A, Ts and T∞ denote the heat transfer coefficient, the area, the temperatures of the

surfaces and the temperatures away from the surfaces, respectively. It is subdivided into the

following three categories.

Definition 2.4.3. (Force convection)

A method of heat transfer in which motion of fluid is obtained by an independent sources,

i.e., a pump or fan is called force convection.

Definition 2.4.4. (Natural convection)

A method in which fluid motion is not generated by an independent source, it is said to be

natural convection. It is also called free convection. In other words, it exists due to the tem-

perature difference which affects the buoyancy and density of the fluids. Natural convection

occurs only when there is a gravitational field.

Definition 2.4.5. (Mixed convection)

A method in which both forced and natural convection processes simultaneously and signif-

icantly involve in the heat transfer is called mixed convection.

Definition 2.4.6. (Radiation)

When two bodies at different temperatures are aligned then radiation effect is occurred. In

the liquid and gases, the radiation and convection play a major role by transferring heat
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but in solids radiation is usually negligible and convection is totally absent. Thus for solid

substances, conduction plays a major role in heat transfer. For example, under the sun rays

if we place a material object, e.g. a piece of steel, after a few moments we observe that the

material object is heated. Such phenomena takes place due to radiation. Mathematically, it

can be written as

q = EσA[(∆T )4], (2.17)

where E, σ, (∆T )4, A, q are the emissivity of the scheme, the constant of Stephan-Boltzmann

(5.670×10−8 W
m2K4 ), the area and the heat transfer, the variation of the temperature respec-

tively.

Definition 2.4.7. (Joule heating)

With finite conductivity when a current flows through a solid or liquid, through resistive

loses in the substance, electric energy is transformed to heat energy. Through collisions

when conduction electrons shift energy to the conductor’s atom then heat is produced on

the micro scale, micro valves, cooking plates and toasters applications depend on the Joule

heating.

Definition 2.4.8. (Thermal conductivity)

The property of a material related to its capacity to conduct heat is known as thermal

conductivity. Fouriers law of conduction which relates the rate of heat transfer by conduction

to the temperature gradient is
dQ

dt
= −kAdT

dx
, (2.18)

where A, k, dQ
dt , dT

dx are the area, the thermal conductivity, the rate of heat transfer and the

temperature gradient respectively. With the increase of temperature, thermal conductivity

of the most of the liquids decreases except water. The SI unit of thermal conductivity is
Kg.m
s3

and its dimension is [ML
T 3 ].

Definition 2.4.9. (Thermal diffusivity)

Thermal diffusivity is material’s property for characterizing unsteady heat conduction (k)

of a substance to the product of specific heat at constant pressure (cp) and density (ρ). It

measures the ability of a substance to transfer thermal energy relative to its ability to store.

Mathematically, it can be written as

α =
k

ρcp
. (2.19)
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2.5 Dimensionless numbers

Definition 2.5.1. (Prandtl number)

The ratio of the kinematic diffusivity or momentum diffusivity to the thermal diffusivity is

said to be the Prandtl number. It is denoted by Pr and mathematically it can be written as

Pr =
υ

α
=

µ
ρ

k
ρcp

=
µcp
k
, (2.20)

where ν and α denote the momentum diffusivity or kinematic diffusivity and the thermal

diffusivity, respectively. It controls the relative thickness of momentum and temperature

function. Physical aspect of Prandtl number gives the respective thickness of thermal bound-

ary layer and velocity boundary layer. For smaller Pr, heat declines quickly as compared to

momentum.

Definition 2.5.2. (Grashof number)

The relationship between viscous force and buoyancy force that are acting on a fluid is called

Grashof number. It repeatedly occurs in the situation relating free convection. Symbolically

it is denoted by Gr and mathematically, it can be written as

Gr =
gβf (Th − Tc)H3

ν2
f

, (2.21)

where, βf , g, Th, Tc, H, ν denote the coefficient of the expansion, the gravitational acceler-

ation, the hot temperature, the cold temperature, the step size and the kinematic viscosity,

respectively.

Definition 2.5.3. (Hartmann number)

The ratio of electromagnetic force to the viscous force is called Hartmann number. It was

first introduced by Hartmann. It is denoted by Ha.

Definition 2.5.4. (Reynolds number)

Reynolds number for the fluid behavior in the boundary layer is specified as the relationship

of inertial forces to the viscous forces. Inertial forces act upon all masses in a non-inertial

frame of reference while viscous forces are the internal fluid flow resistance. It is denoted by
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Re and mathematically it can be written as

Re =
µoH

νf
, (2.22)

where µo denotes the dynamic velocity, H denotes the step size and νf represents the kine-

matic viscosity of fluid. Turbulent flow occurs at high Reynolds number due to the dominance

of inertial force while for a low Reynolds number, laminar flow arises where viscous forces

are dominant which is characterized by the laminar flow.

Definition 2.5.5. (Nusselt number)

It is the relationship between convective to the conductive heat transfer through the boundary

of the surface. It was first introduced by the German mathematician Nusselt and is denoted

by Nu. Mathematically, local Nusselt number of nanofluid is calculated as

Nux = −
knf
kf

(
∂θ

∂n

)
, (2.23)

where k, θ and n denote the thermal conductivity , dimensionless temperature and surface

normal direction, respectively.

Average Nusselt number is achieved by integrating the local Nusselt number as

Nuavg =

∫
Nux dx. (2.24)

Definition 2.5.6. (Richardson number)

The intensity of the buoyancy term to the flow shear term is called Richardson number. It

is introduced by Lewis Fry Richardson. The Richardson number can be expressed by using

a combination of the Reynolds number and Grashof number given as

Ri =
Gr

Re2
. (2.25)

2.6 Basic equations

Definition 2.6.1. (Continuity equation)

The law of conservation of mass states that mass in a classical system is conserved. It is

derived from the law of conservation of mass and mathematically, it is expressed by

∂ρ

∂t
+∇.(ρV) = 0, (2.26)
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where t is the time.

For incompressible fluid, continuity equation takes the form

∇.V = 0. (2.27)

Definition 2.6.2. (Law of conservation of momentum)

Each particle of fluids which is in state of steady or accelerated motion obey Newton second

law of motions. This law illustrates that the combination of applied external force working

on a scheme is equal to times rate of changes of linear momentums of the scheme. This law

is expressed as

ρ
dV

dt
= divτ + ρb, (2.28)

For Navier-Stokes equation

τ = −pI + µA1, (2.29)

where A1 is the tensor and first time it was produced by Rivlin-Erickson.

A1 = gradV + (gradV)t, (2.30)

In the above, d
dt denotes material time derivative or total derivative, ρ denotes density, V

denotes velocity field, τ is the Cauchy stress tensor, b is the body forces, p is the pressure

and µ denotes the dynamic viscosity.

The matrix form of Cauchy stress tensor is expressed by

T =


σxx τyx τzx

τxy σyy τzy

τxz τyz σzz

 , (2.31)

where σxx, σyy and σzz are normal stresses, otherwise the shear stresses. For two-dimensional

flow, we have V = [u(x, y, 0), v(x, y, 0), 0] and thus

gradV =


∂u
∂x

∂u
∂y 0

∂v
∂x

∂v
∂y 0

0 0 0

 . (2.32)

Substituting Eq. (2.31) and (2.32) in Eq. (2.29), we obtain

∂u

∂t
+ u

∂u

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
. (2.33)
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Similarly, by repeating the above process for V component, we get

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
. (2.34)

2.6.1 Energy equation

The energy equation is

ρcp

(
∂

∂t
+ V.∇

)
T = k∇2T + τL+ ρcp

[
DB∇C.∇T +

DT

Tm
∇T
]
, (2.35)

where (cp)f denotes the specific heat of the basic fluid, (cp)s is the specific heat of the ma-

terial, ρf is the density of basic fluid, L denotes the rate of strain tensor and T is the

temperature of the fluid, DB represents the Brownian motion coefficient DT denotes the

temperature diffusion coefficient and Tm denotes the mean temperature. The expression for

Cauchy stress tensor τ for viscous incompressible fluid is expressed by

τ = −pI + µA1, (2.36)

A1 = gradV + (gradV)t, (2.37)

where t represents transpose of the matrix for two dimensional field velocity of the fluid, T

the stain tensor and can be written as

T =


σxx τyx τzx

τxy σyy τzy

τxz τyz σzz

 . (2.38)

2.7 Finite Element Method

The finite element method is a numerical scheme for finding the approximate solution of

boundary value problem for partial differential equations. Finite element method subdivides

a huge problem into smaller parts, named as the finite elements. A finite element method is

simulated by a weak formulation, one or more solution algorithms and post processing pro-

cedure. Examples of weak formulation are the weighted residual method, the discontinuous

Galerkin method, mixed method, etc. [24]
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Definition 2.7.1. (Galerkin Finite Element Method)

The area of numerical analysis in which Galerkin method is the class of method for convert-

ing the continuous problems into discrete problems. Principally, it is similar to variational

method for applying parameters to the functional space, by interchanging the equations to

the weak formulation [25]. It contains the following steps

1. Multiply both sides of governing equations of the problem by test function w ε W, that

is vanishing on the boundaries of the domain, where W is a test space.

2. Perform integration by parts such that some derivatives will be transferred from trial

to test function.

3. Include natural boundary conditions in boundary integrals and build essential boundary

conditions into trial space U and test space W . This is called variational formulation.

4. Generate triangulation or mesh. Divide the entire domain into non-overlapping ele-

ments. In one dimension, mesh is a set of points that is, x0 = 0, x1, x2, ....xN = 1,

where xi is called a node and ei = {xi, xi+1} is an element such that ei
⋂
ej=ϕ for i6=j.

hi = xi − xi−1 for i = 0, 1, ...N is called mesh size.

5. Approximate the infinite dimensional trial space U and test space W by finite dimen-

sional spaces Uh, Vh and Wh, respectively where Uh (finite dimensional space) ⊂ U

(solution space).

6. Choose the basis functions ϕ1,ϕ2,...ϕN of wh, so that every test function whε Wh can

be written as wh=
∑
wiϕiε Wh for i = 1, ...N .

7. Find uhεUh such that a(uh, wh)=b(wh) ∀ wh=
∑
wiϕi εWh for i = 1, ...N ,

⇒ a(uh, ϕi) = b(ϕi), where i = 1, ..., N .

Substituting uh=
∑
ujϕj , for j = 1, ...N ,

a(
∑
ujϕj , ϕi) = b(ϕi) for i, j = 1, 2, 3..., N ,

⇒
∑
a(ϕj , ϕi)uj = b(ϕi) for i, j = 1, 2, 3..., N .

where uj are the solution values at the nodes. Also a(u,w) is bilinear form and b(w)

is the linear form.

2.7.1 Advantages

• Finite element method is very good in managing complex geometrical boundaries [24].

• There are many commercial packages based on finite element method, i.e., ADINA,

ANSYS for analyzing practical problems [25].



Chapter 3

Influence of magnetic field

inclination on mixed convective

flow over backward facing step

In this chapter, we perform the numerical study of laminar mixed convection of nanofluid

flow over a backward facing step under the influence of inclination angles of magnetic field.

By using an appropriate transformation, we transform the system of nonlinear dimensional

partial differential equations into coupled dimensionless partial differential equations. Finite

element technique together with Galerkin weighted residual method has been used to solve

the considered problem. The impact of governing parameters is analyzed through streamlines

and isotherms. In this chapter, review of the research paper [26] has been presented.

3.1 Problem Formulation

Let us consider the laminar, two-dimensional, steady incompressible viscous flow of an elec-

trically conducting fluid in backward facing step filled with Cu-water nanofluid. Schematic

diagram of the system under investigation is shown in the Figure 3.1. The size of backward

facing step is H and channel height is given as 2H. The inflow side of the channel, constant

velocity and uniform temperature Tc are considered. The bottom wall of the channel down-

stream of the step is isothermally heated while the other walls are assumed to be adiabatic

with no-slip boundary conditions. The thermophysical properties of the fluid [26] are shown

in Table 3.1. Under these assumptions, the governing equations of continuity, momentum

and energy [23] which model the flow can be expressed in dimensional form given as .

19
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Figure 3.1: Geometry of the physical model.

Property Water Copper

ρ 997.1 8954
cp 4179 383
k 0.6 400
β 2.1× 10−4 1.67× 10−5

σ 0.05 5.97× 107

Table 3.1: Thermophysical properties of water and copper [26].

Continuity equation:

∂u

∂x
+
∂v

∂y
= 0, (3.1)

Momentum equation for u-velocity:

u
∂u

∂x
+v

∂u

∂y
= − 1

ρnf

∂p

∂x
+νnf

(
∂2u

∂x2
+
∂2u

∂y2

)
+
σnfB

2
0

ρnf

(
v sin(ψ) cos(ψ)− u sin2(ψ)

)
, (3.2)

Momentum equation for v-velocity:

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρnf

∂p

∂y
+ νnf

(
∂2v

∂x2
+
∂2v

∂y2

)
+
σnfB

2
0

ρnf

(
u sin(ψ) cos(ψ)− v cos2(ψ)

)
+βnfg(T − Tc), (3.3)

Energy equation:

u
∂T

∂x
+ v

∂T

∂y
= αnf

(
∂2T

∂x2
+
∂2T

∂y2

)
. (3.4)

Here u, v denote the velocity components, the kinematic fluid velocity is ν, the fluid density

is ρ, the specific heat is cp, the fluid thermal conductivity is k, the magnetic field strength is

B0, the electrical conductivity is σ, the expansion coefficient is β, ψ is the inclination angle

of magnetic field and α is the thermal diffusivity of the nanofluid.
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Nanofluid properties Expressed model

Density ρnf = (1-φ)ρf+φρp
Specific heat (ρcp)nf=(1-φ)(ρcp)f+φ(ρcp)p
Thermal diffusivity αnf = knf/(ρcp)nf
Electrical conductivity σnf = (1-φ)σf+φσp
Thermal expansion coefficient (ρβ)nf=(1-φ)(ρβ)f+φ(ρβ)p

Table 3.2: Implemented formulas for the nanofluid properties [23].

3.2 Non-dimensional Form of the Governing Equations

By using the following dimensionless parameters [20], Eqs. (3.1) - (3.4) are converted into

the dimensionless form as follows

Gr =
gβf (Th−Tc)H3

ν2f
, Pr =

νf
αf

, Re = u0H
νf

, Ri = Gr
Re2

, Ha = B0H
√

σf
µf

.

Dimensionless variables involved are

X = x
H , Y = y

H , U = u
u0

, V = v
u0

, P = p
ρfu

2
0
, θ = T−Tc

Th−Tc .

The governing dimensionless equations are given by

∂U

∂X
+
∂V

∂Y
= 0, (3.5)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+

1

Re

ρf
ρnf

1

(1− φ)2.5

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+

ρf
ρnf

σnf
σf

Ha2

Re

(
V sin(ψ) cos(ψ)− U sin2(ψ)

)
, (3.6)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+

1

Re

ρf
ρnf

1

(1− φ)2.5

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+Ri

ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)
θ

+
ρf
ρnf

σnf
σf

Ha2

Re

(
U sin(ψ) cos(ψ)− V cos2(ψ)

)
, (3.7)

U
∂θ

∂X
+ V

∂θ

∂Y
=
αnf
αf

1

RePr

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
. (3.8)

The non-dimensional boundary condition along the channel wall in appropriate form are

given as

• On the inlet of channel:

U = 1, V = 0, θ = 0, (3.9)
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• On the bottoms wall:

U = 0, V = 0, θ = 1, (3.10)

• On the outlet of channel:

∂U

∂X
= 0, V = 0,

∂θ

∂X
= 0, (3.11)

• On the rest of walls of channel:

U = 0, V = 0,
∂θ

∂n
= 0. (3.12)

where n represent the surface normal direction.

Implemented formulas for nanofluid [23] as given in Table 3.2

3.3 Numerical solution

The systems of coupled non-linear partial differential Eqs. (3.5) - (3.8) together with the

boundary conditions (3.9) - (3.12) has been solved numerically by finite element method

together with the Galerkin weighted residual method. First, we established the weak formu-

lation of the governing equations and then approximated the solution utilizing the Galerkin

approximation procedure.

3.3.1 Variational/Weak Formulation

Variational form is an approach in which the governing equations are converted from strong

form into weak form by multiplying with test function before they are integrated over the

entire domain (Ω).
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Strong form:

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+

1

Re

ρf
ρnf

1

(1− φ)2.5

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+

ρf
ρnf

σnf
σf

Ha2

Re

(
V sin(ψ) cos(ψ)− U sin2(ψ)

)
, (3.13)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+

1

Re

ρf
ρnf

1

(1− φ)2.5

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+Ri

ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)
θ

+
ρf
ρnf

σnf
σf

Ha2

Re

(
U sin(ψ) cos(ψ)− V cos2(ψ)

)
, (3.14)

∂U

∂X
+
∂V

∂Y
= 0, (3.15)

U
∂θ

∂X
+ V

∂θ

∂Y
=
αnf
αf

1

RePr

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
. (3.16)

Variational form:

Let W = (H1(Ω), H1(Ω), H1(Ω)) be the test space for velocity components and temperature

and Q = L2(Ω) is the test space for pressure. A variational form is as follows:

Find (U , V , θ, P ) ε W × Q such that

∫
Ω

(
U
∂U

∂X
+ V

∂U

∂Y

)
w dΩ−

ρf
ρnf

σnf
σf

Ha2

Re

∫
Ω

(
V sin(ψ) cos(ψ)− U sin2(ψ)

)
w dΩ

− 1

Re

ρf
ρnf

1

(1− φ)2.5

∫
Ω

(
∂2U

∂X2
+
∂2U

∂Y 2

)
w dΩ +

∫
Ω

∂P

∂X
w dΩ = 0, (3.17)

∫
Ω

(
U
∂V

∂X
+ V

∂V

∂Y

)
w dΩ− 1

Re

ρf
ρnf

1

(1− φ)2.5

∫
Ω

(
∂2V

∂X2
+
∂2V

∂Y 2

)
w dΩ

−
ρf
ρnf

σnf
σf

Ha2

Re

∫
Ω

(
U sin(ψ) cos(ψ)− V cos2(ψ)

)
w dΩ

−Ri
ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)∫
Ω
θ w dΩ +

∫
Ω

∂P

∂Y
w dΩ = 0, (3.18)

∫
Ω

(
∂U

∂X
+
∂V

∂Y

)
q dΩ = 0, (3.19)

∫
Ω

(
U
∂θ

∂X
+ V

∂θ

∂Y

)
w dΩ−

αnf
αf

1

RePr

∫
Ω

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
w dΩ = 0. (3.20)
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for all (w, q) ε W × Q.

Let U ≈ Uh , V ≈ Vh , θ ≈ θh , P ≈ Ph.

w ≈ wh , q ≈ qh.

Then the Galerkin finite element method yields the following non-linear equations

1

Re

ρf
ρnf

1

(1− φ)2.5

∫
Ω

(
∂Uh
∂X

∂wh
∂X

+
∂Uh
∂Y

∂wh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Uh
∂X

+ Vh
∂Uh
∂Y

)
wh dΩ

−
ρf
ρnf

σnf
σf

Ha2

Re

∫
Ω

(
Vh sin(ψ) cos(ψ)− Uh sin2(ψ)

)
wh dΩ +

∫
Ω

∂Ph
∂X

wh dΩ = 0, (3.21)

1

Re

ρf
ρnf

1

(1− φ)2.5

∫
Ω

(
∂Vh
∂X

∂wh
∂X

+
∂Vh
∂Y

∂wh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Vh
∂X

+ Vh
∂Vh
∂Y

)
wh dΩ

−Ri
ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)∫
Ω
θh wh dΩ

−
ρf
ρnf

σnf
σf

Ha2

Re

∫
Ω

(
Uh sin(ψ) cos(ψ)− Vh cos2(ψ)

)
wh dΩ +

∫
Ω

∂Ph
∂Y

wh dΩ = 0, (3.22)

∫
Ω

(
∂Uh
∂X

+
∂Vh
∂Y

)
qh dΩ = 0, (3.23)

αnf
αf

1

RePr

∫
Ω

(
∂θh
∂X

∂wh
∂X

+
∂θh
∂Y

∂wh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂θh
∂X

+ Vh
∂θh
∂Y

)
wh dΩ = 0. (3.24)

Using the FEM approximations of Uh, Vh, Ph and θh, the fully discrete block system reads

the following


a11L+ b11M +N(U, V ) b12M B1 0

b21M a22L+ b22M +N(U, V ) B2 b24M

BT
1 BT

2 0 0

0 0 0 a44L+N(U, V )




U

V

P

θ

 =


0

0

0

0


(3.25)

where

a11 =
1

Re

ρf
ρnf

1

(1− φ)2.5
= a22,

a44 =
αnf
αf

1

RePr
,
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b11 =
ρf
ρnf

σnf
σf

Ha2

Re
sin2 ψ,

b12 = −
ρf
ρnf

σnf
σf

Ha2

Re
sinψ cosψ = b21,

b22 =
ρf
ρnf

σnf
σf

Ha2

Re
cos2 ψ,

b24 = Ri
ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)
.

In the block matrix (3.25), L, M and N represent the Laplace, mass and convective ma-

trix respectively, B1 and B2 are the pressure matrices and BT
1 , BT

2 are their corresponding

transpose. Velocity components and temperature are discretized by Q2-element of 3rd order

accuracy and pressure is approximated by P disc1 -element of 2nd order accuracy (see [27] for

details). After putting the approximations in the above equations, residual for each of the

governing equations is obtained. The non-linear terms in the governing system of equations

are linearized by Picard iteration method.

The convergence of solution is obtained when the relative errors for each variable satisfy

the given convergence criteria:

∣∣∣∣Γn+1 − Γn

Γn+1

∣∣∣∣ ≤ 10−6. (3.26)

where ‘n’ is the number of iteration and Γ is any dependent variable.

3.4 Code Validation

The present code is validated against the benchmarks results of the reattachment lengths for

recirculation region in a horizontal channel with a backward facing step at Reynolds number

of 100 as shown in the Table 3.3. Prandtl number is fixed at 6.1. Calculations of forced (Gr

= 0, Ri = 0) and mixed convection (Gr = 1000, Ri = 0.1) past an adiabatic backward facing

step with an isothermal surroundings walls are presented in Table 3.3 which shows that our

results are in excellent agreement with results of Refs. [28] - [31].

Ri Present
study

Ref. [28] Ref. [29] Ref. [30] Ref. [31]

0.0 4.96875 4.99 4.99 4.97 4.91
0.1 2.96875 3.05 3.05 2.97 3.10

Table 3.3: Reattachment lengths for recirculation region at Reynolds number of 100.
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3.5 Results and discussion

Numerical result are shown in terms of isotherms and streamlines distribution in Figure 3.2

- Figure 3.5 for different values of governing parameters. The channel is occupied with Cu

nanoparticles. Grashof number has fixed value of 5000 for all calculations.

The effect of varying Reynolds number on the streamlines is shown in the Figure 3.2 while

other parameters are kept fixed with Ha = 20, φ = 0.02, ψ = 0◦. Strong flow strength is

seen near the upper wall which indicates the high velocity for Re = 20 as shown in the Fig-

ure 3.2(a). When the Reynolds number increases from 20 to 200, the flow at the corner of the

step separate and recirculating cell is obtained behind the step. At the beginning for Re = 20,

the size of recirculation zone decreases as it can be seen in Figure 3.2(a) and then increases

with the increase in Reynolds number which can be shown in Figure 3.2(b) and Figure 3.2(c).

The effect of varying Reynolds number on the isotherms distribution is shown in the Fig-

ure 3.3 for inclination angle 0◦ while keeping other parameters fixed, i.e., Ha = 20, φ =

0.02 and ψ = 0◦. Temperature near the bottom hot wall indicates high heat transfer which

gradually declines in the flow away from it. A steep temperature contour around the flow

reattachment point can be seen along the bottom wall downstream of the step as shown in

Figure 3.3(a) - (c).

The effect of varying Hartmann number with Re = 100, ψ = 0◦, φ = 0.02 on stream-

lines and isotherms distribution is presented in Figures 3.4 and 3.5. The flow separation is

seen behind the step in the absence of magnetic field. Flow separation first decreases for

Ha = 0 as in Figure 3.4(a) then increases with the increasing values of Hartmann number

from 0 to 50 as shown in the Figure 3.4(b) and Figure 3.4(c). For the inclined magnetic field,

as the value of Ha increases, suppression of the recirculation zone is observed behind the step.

The effect of varying Hartmann number with ψ = 0◦, Re = 100, φ = 0.02 on the isotherms

distribution is shown in Figure 3.5. For the horizontally oriented magnetic field, the less

contouring of the isotherm along the lower wall near the step can be seen with increasing

Hartmann number. The recirculation zone is restricted to a small region and steepest tem-

perature gradient for the vertical and inclined magnetic field is seen in the zone closer to the

step as compared to cases with no-magnetic field.

In Figures 3.6 and 3.7, effect of magnetic field inclination ψ on flow and thermal config-

uration for inclination angle 0◦, 45◦ and 90◦ in term of streamlines and isotherms is shown.

The effect of magnetic field inclination on streamlines is shown in Figure 3.6. Strong flow

strength can be seen near the upper wall of channel due to high velocity. For inclination
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angle of ψ = 45◦, the separated flow region behind the step is smallest as it can be seen in

the Figure 3.6(b).

The effect of ψ on isotherms is depicted in Figure 3.7. When the inclination angle of magnetic

field increases from 0◦ to 90◦, more clustering of the isotherms can be seen at the bottom

wall in the vicinity of the step as shown in Figure 3.7(a) - (c). ψ = 45◦ provides better local

heat transfer enhanced characteristics in the near of the step among different orientations of

the magnetic field as it is shown in Figure 3.7(b). Average Nusselt number increases with

the increase of inclination angle of magnetic field from 0◦ to 90◦.

Average heat transfer versus Reynolds number is depicted in Figure 3.8. It is clearly shown

in the Figure 3.8 that average Nusselt number increases with the increasing value of Reynolds

number and this effect is more pronounced in case of nanofluid.

The impact of Hartmann number on the average Nusselt number is depicted in Figure 3.9.

Heat transfer rate decreases with increase of Hartmann number in case of pure water and

nanofluid as shown in the Figure 3.9.

The effect of ψ on average heat transfer is shown in Figure 3.10. The average heat transfer

rate increases as the value of inclination angle increases and this impact is more pronounced

in case of nanofluid.
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(a) Re = 20

(b) Re = 80

(c) Re = 200

Figure 3.2: Influence of Reynolds number on the streamlines distribution for ψ = 0◦,
Ha = 20, φ = 0.02.

(a) Re = 20

(b) Re = 80

(c) Re = 200

Figure 3.3: Influence of Reynolds number on the isotherms distribution for ψ = 0◦, Ha =
20, φ = 0.02.
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(a) Ha = 0

(b) Ha = 20

(c) Ha = 50

Figure 3.4: Influence of Hartmann number on the streamlines distribution for ψ = 0◦,
Re = 100, φ = 0.02.

(a) Ha = 0

(b) Ha = 20

(c) Ha = 50

Figure 3.5: Influence of Hartmann number on the isotherms distribution for ψ = 0◦,
Re = 100, φ = 0.02.
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(a) ψ = 0◦

(b) ψ = 45◦

(c) ψ = 90◦

Figure 3.6: Influence of magnetic field inclination on the streamlines distribution for Ha =
20, Re = 200, φ = 0.02.

(a) ψ = 0◦

(b) ψ = 45◦

(c) ψ = 90◦

Figure 3.7: Influence of magnetic field inclination on the isotherms distribution for Ha =
20, Re = 200, φ = 0.02.
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Figure 3.8: The effect of Re on average Nusselt number.
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Figure 3.9: The effect of Ha on average Nusselt number.
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Figure 3.10: The effect of inclination angle on average Nusselt number.



Chapter 4

Numerical simulation of mixed

convective nanofluid considering

internal heat generation/absorption

Based on the literature analysis, in spite of the different studies have been done on backward

facing step, there is a definite dearth of information regarding the mixed convective flow over

backward facing step with internal heat generation/absorption under the impact of magnetic

field inclination. The objective of the present work is to perform a numerical simulation of

a two dimensional laminar mixed convective flow over a backward facing step with internal

heat generation/absorption using Cu-water as nanofluid.

This chapter investigates the numerical study of laminar mixed convection of nanofluid flow

over the backward facing step with the impact of inclined magnetic field and internal heat

genaration/absorption. By using appropriate transformation, we derived and solved the sys-

tem of nonlinear dimensional partial differential equation into coupled dimensionless partial

differential equations and solved these equations by the finite element technique together

with the Galerkin weighted residual method. The problem convergence is determined. The

impact of internal heat generation or absorption in velocity and temperature is discussed

and also shown by figures. This work is an extension of the work presented in Chapter 3.

4.1 Mathematical Formulation

Let us consider the laminar two-dimensional flow of an incompressible viscous fluid of an

electrically conducting fluid. The channel is filled with Cu nanoparticles with an effect of an

inclined magnetic field. Geometry of the physical model is given in Figure 4.1.

32
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Figure 4.1: Geometry of the physical model.

At the inlet, uniform temperature Tc and parabolic velocity are imposed. The bottom walls

of the channel downstream of the step is isothermally heated while the other wall are as-

sumed to be adiabatic. The constant thermophysical properties of the fluid [26] are shown

in the Table 4.1. Governing equations of momentum, continuity and energy [21] under the

above mentioned assumption are given by:

Continuity equation:

∂u

∂x
+
∂v

∂y
= 0, (4.1)

Momentum equation for u-velocity:

u
∂u

∂x
+v

∂u

∂y
= − 1

ρnf

∂p

∂x
+νnf

(
∂2u

∂x2
+
∂2u

∂y2

)
+
σnfB

2
0

ρnf

(
v sin(ψ) cos(ψ)− u sin2(ψ)

)
, (4.2)

Momentum equation for v-velocity:

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρnf

∂p

∂y
+ νnf

(
∂2v

∂x2
+
∂2v

∂y2

)
+
σnfB

2
0

ρnf

(
u sin(ψ) cos(ψ)− v cos2(ψ)

)
+βnfg(T − Tc), (4.3)

Energy equation:

u
∂T

∂x
+ v

∂T

∂y
= αnf

(
∂2T

∂x2
+
∂2T

∂y2

)
+

Qo
(ρcp)nf

(T −Tc). (4.4)

Here u, v denotes the velocity component along x-axis and y-axis respectively, the kinematic

fluid velocity is ν, the fluid density is ρ, the specific heat is cp, the fluid thermal conductivity is

k, the magnetic field strength is B0, the electrical conductivity is σ, the expansion coefficient

is β, ψ is the inclination angles of magnetic field, Qo is the heat generation/absorption

coefficient, T is the temperature and α is the thermal diffusivity of the nanofluid.

The boundary condition along the channel walls in appropriate forms are
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Property Water Copper

ρ 997.1 8954
cp 4179 383
k 0.6 400
β 2.1× 10−4 1.67× 10−5

σ 0.05 5.97× 107

Table 4.1: Thermophysical properties of water and copper [26].

• On the inlet of channel,

u = 1, v = 0, T = 0 (4.5)

• On the bottom walls,

u = 0, v = 0, T = 1. (4.6)

• At the outlet,

∂u

∂x
= 0, v = 0,

∂T

∂X
= 0. (4.7)

• On the adiabatic wall,

u = 0, v = 0,
∂T

∂n
= 0, (4.8)

where n represent the normal surface direction.

4.1.1 Non-dimensional Form of the Governing Equations

By using the following dimensionless parameters [21], Eqs. (4.1) - (4.4) are converted into

the dimensionless form.

q =
QoH

2

(ρcp)nfαnf
(Heat generation/absorption parameter),

Re =
u0H

νf
(Reynolds number).

Other dimensionless variables are defined as:

X = x
H , Y = y

H , U = u
u0

, V = v
u0

, P = p
ρfu

2
0
, θ = T−Tc

Th−Tc , Pr =
νf
αf

,

Gr =
gβf (Th−Tc)H3

ν2f
, Re = u0H

νf
, Ri = Gr

Re2
, Ha = B0H

√
σf
µf

.
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∂U

∂X
+
∂V

∂Y
= 0, (4.9)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+

1

Re

ρf
ρnf

1

(1− φ)2.5

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+

ρf
ρnf

σnf
σf

Ha2

Re

(
V sin(ψ) cos(ψ)− U sin2(ψ)

)
, (4.10)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+

1

Re

ρf
ρnf

1

(1− φ)2.5

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+Ri

ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)
θ

+
ρf
ρnf

σnf
σf

Ha2

Re

(
U sin(ψ) cos(ψ)− V cos2(ψ)

)
, (4.11)

U
∂θ

∂X
+ V

∂θ

∂Y
=
αnf
αf

1

RePr

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
+

q

RePr
θ (4.12)

Here U , V denotes the dimensionless velocity component along X and Y dimensionless co-

ordinates respectively, q is the heat source parameter and θ represent the non-dimensional

temperature.

The dimensionless boundary condition along the channel walls in appropriate forms are

as follows

• On the inlet side of the channel:

U = 1, V = 0, θ = 0. (4.13)

• On the bottom wall:

U = 0, V = 0, θ = 1. (4.14)

• On the outlet side of the channel:

∂U

∂X
= 0, V = 0,

∂θ

∂X
= 0. (4.15)

• On the rest of walls of channel:

U = 0, V = 0,
∂θ

∂n
= 0, (4.16)

where n represent the surface normal direction.
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4.2 Numerical Solution

The basic idea of finite element method is to transform the following equations into the

variational or weak form. The whole domain is discretized into quadrilateral elements. The

systems of coupled nonlinear partial differentials Eqs. (4.9) - (4.12) together with the bound-

ary conditions (4.13) - (4.16) has been solved numerically by Galerkin weighted residual

method of finite element formulation. First, we established the weak formulation of the gov-

erning equations and then approximated the solution utilizing the Galerkin approximation

procedure.

4.2.1 Variational form and Governing Matrix

The distinguishing feature of finite element method is that the equations are multiplied by

a test function before they are integrated over the whole domain Ω.

Let W = (H1(Ω), H1(Ω), H1(Ω)) be the test space for velocity components and temperature

and Q = L2(Ω) is the test space for pressure.

A variational form is as follows

Strong form:

∂U

∂X
+
∂V

∂Y
= 0, (4.17)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+

1

Re

ρf
ρnf

1

(1− φ)2.5

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+

ρf
ρnf

σnf
σf

Ha2

Re

(
V sin(ψ) cos(ψ)− U sin2(ψ)

)
, (4.18)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+

1

Re

ρf
ρnf

1

(1− φ)2.5

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+Ri

ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)
θ

+
ρf
ρnf

σnf
σf

Ha2

Re

(
U sin(ψ) cos(ψ)− V cos2(ψ)

)
, (4.19)

U
∂θ

∂X
+ V

∂θ

∂Y
=
αnf
αf

1

RePr

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
+

q

RePr
θ (4.20)

A variational form is given as

Find (U , V , P , θ) ε W × Q such that
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∫
Ω

(
U
∂U

∂X
+ V

∂U

∂Y

)
w dΩ− 1

Re

ρf
ρnf

1

(1− φ)2.5

∫
Ω

(
∂2U

∂X2
+
∂2U

∂Y 2

)
w dΩ

−
ρf
ρnf

σnf
σf

Ha2

Re

∫
Ω

(
V sin(ψ) cos(ψ)− U sin2(ψ)

)
w dΩ +

∫
Ω

∂P

∂X
w dΩ = 0, (4.21)

∫
Ω

(
U
∂V

∂X
+ V

∂V

∂Y

)
w dΩ− 1

Re

ρf
ρnf

1

(1− φ)2.5

∫
Ω

(
∂2V

∂X2
+
∂2V

∂Y 2

)
w dΩ

−
ρf
ρnf

σnf
σf

Ha2

Re

∫
Ω

(
U sin(ψ) cos(ψ)− V cos2(ψ)

)
w dΩ

−Ri
ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)∫
Ω
θ w dΩ +

∫
Ω

∂P

∂Y
w dΩ = 0, (4.22)

∫
Ω

(
∂U

∂X
+
∂V

∂Y

)
q dΩ = 0, (4.23)

∫
Ω

(
U
∂θ

∂X
+ V

∂θ

∂Y

)
w dΩ−

αnf
αf

1

RePr

∫
Ω

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
w dΩ− q

RePr

∫
Ω
θ w dΩ. (4.24)

for all (w, q) ε W × Q.

Let U ≈ Uh , V ≈ Vh , θ ≈ θh , P ≈ Ph.

w ≈ wh , q ≈ qh.

The Galerkin weighted residual method transform the nonlinear equation given below

1

Re

ρf
ρnf

1

(1− φ)2.5

∫
Ω

(
∂Uh
∂X

∂wh
∂X

+
∂Uh
∂Y

∂wh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Uh
∂X

+ Vh
∂Uh
∂Y

)
wh dΩ

−
ρf
ρnf

σnf
σf

Ha2

Re

∫
Ω

(
Vh sin(ψ) cos(ψ)− Uh sin2(ψ)

)
wh dΩ +

∫
Ω

∂Ph
∂X

wh dΩ = 0, (4.25)

1

Re

ρf
ρnf

1

(1− φ)2.5

∫
Ω

(
∂Vh
∂X

∂wh
∂X

+
∂Vh
∂Y

∂wh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Vh
∂X

+ Vh
∂Vh
∂Y

)
wh dΩ

−Ri
ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)∫
Ω
θh wh dΩ

−
ρf
ρnf

σnf
σf

Ha2

Re

∫
Ω

(
Uh sin(ψ) cos(ψ)− Vh cos2(ψ)

)
wh dΩ +

∫
Ω

∂Ph
∂Y

wh dΩ = 0, (4.26)

∫
Ω

(
∂Uh
∂X

+
∂Vh
∂Y

)
qh dΩ = 0, (4.27)

αnf
αf

1

RePr

∫
Ω

(
∂θh
∂X

∂wh
∂X

+
∂θh
∂Y

∂wh
∂Y

)
dΩ+

∫
Ω

(
Uh
∂θh
∂X

+ Vh
∂θh
∂Y

)
wh dΩ− q

RePr
θhwh dΩ = 0.

(4.28)
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Using the FEM approximations of Uh, Vh, Ph and θh, the fully discrete block system reads

the following:


A11 b12M B1 0

b21M A22 B2 b24M

BT
1 BT

2 0 0

0 0 0 A44




U

V

P

θ

 =


0

0

0

0

, (4.29)

where

A11 = a11L+ b11M +N(U, V ),

A22 = a22L+ b22M +N(U, V ),

A44 = b44M +N(U, V ),

a11 =
1

Re

ρf
ρnf

1

(1− φ)2.5
= a22,

a44 =
αnf
αf

1

RePr
,

b11 =
ρf
ρnf

σnf
σf

Ha2

Re
sin2 ψ,

b12 = −
ρf
ρnf

σnf
σf

Ha2

Re
sinψ cosψ = b21,

b22 =
ρf
ρnf

σnf
σf

Ha2

Re
cos2 ψ,

b24 = Ri
ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)
,

b44 = − 1

RePr
q.

L, M , N in the block matrix (4.29) represents the Laplace, mass and convective matrices

respectively, B1 and B2 are the pressure matrices and BT
1 , BT

2 are their corresponding trans-

pose.

Velocity components and temperature are discretized by Q2-element and pressure is approx-

imated by P disc1 -element (see [27] for details). The non-linear terms in the governing system

of equations are linearized by Picard iteration method.

The convergence of our solution is assumed when the relative error for each of the variables

satisfy the given convergence criteria:
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∣∣∣∣Γn+1 − Γn

Γn+1

∣∣∣∣ ≤ 10−6. (4.30)

Where ‘n’ is the number of iteration and Γ is any dependent variable.

4.3 Results and discussion

Application of FEM is performed to study the effect of thermal boundary conditions on com-

bined convection heat transfer and fluid flow. In this section, numerical result are presented

in terms of streamline and isotherm distribution for different value of physical parameters.

The channel is filed with Cu-water nanofluid. The governing parameters are Hartmann

number (0 ≤ Ha ≤ 20), Reynolds number (20 ≤ Re ≤ 200), solid volume fraction (0 ≤ φ

≤ 0.04) and magnetic field inclination angle(0◦ ≤ ψ ≤ 90◦). The considered values of heat

generation/absorption parameter are taken as (-10, -5, 0, 5, 10). Prandtl number is fixed

at 6.1 and Grashof number is also fixed at 5000. Numerical simulation of streamlines and

isotherms for above mentioned parameters are displayed and the value of average Nusselt

number has been calculated.

Figure 4.2 and Figure 4.3 shows the temperature and velocity field for various values of

Re. In Figure 4.2, the effect of varying Re on streamlines is shown. Flow strength due to

high velocity can be seen on the above wall of channel in Figure 4.2(a) for Re = 20 . When

the Reynolds number increases Figure 4.2(a) - (c), the flow at the corner of the step separates

and a recirculation zone is observed behinds the step. For Re = 20, the size of recirculation

zone decreases and then increases for Re = 80 and Re = 200 and with the increases in the

Reynolds number, the maximum value of the stream function increases.

The impact of Reynolds number on the isotherms is depicted in the Figure 4.3. Tempera-

ture near the heated wall shows the thickness of thermal boundary layer. Average Nusselt

number increases with increasing of Reynolds number. When Reynolds number increases as

in Figure 4.3(a) - (c), more contouring of the isotherm can be shown in the lower wall in the

vicinity of the step. Among different orientations of magnetic field, ψ = 45◦ provides better

heat transfer enhanced characteristics in the vicinity of the step compared to horizontal and

vertical alignment as shown in Figure 4.3(b).

The effect of internal heat generation/absorption parameter is shown in Figure 4.4 and

Figure 4.5. Here, we considered three cases, i.e., heat generation (q > 0), heat absorption (q
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< 0) and q = 0 i.e. no heat generation or absorption. Heat generation/absorption param-

eter does not effect the streamlines distribution. The effect of heat generation/absorption

parameter on isotherms distribution is shown in Figure 4.5. There is shown a slight increase

in heat transfer in case of heat absorption whereas a decrease has been observed in case

of heat generation. Average Nusselt number decreases with an increase in heat generation

parameter. Quantitative changes can be seen through graph.

The influence of magnetic field inclination through streamlines and isotherms distribution

is shown in Figure 4.6 and Figure 4.7. For inclination angle of ψ = 45◦, the separated flow

region behind the step is smallest as it can be seen in the Figure 4.6(b). Heat transfer rate

seems to be increased with an increase in inclination angle of magnetic field from 0◦ to 90◦.

Average Nusselt number verses Reynolds number is shown in Figure 4.8. Average heat

transfer increases as the value of Reynolds number seems to be increased at ψ = 45◦.

The effect of internal heat generation on average Nusselt number is shown in Figure 4.9.

As we increase the value of q from -10 to 10, average heat transfer decreases as shown in

Figure 4.9.

Average Nusselt number verses magnetic field inclination is depicted in the Figure 4.10.

The graph clearly shows that with an increase in an inclination of magnetic field, i.e., from

0◦ to 90◦, heat transfer rate increases.

The impact of φ on averaged Nusselt number with various magnetic field inclination (0◦

≤ ψ ≤ 90◦) as a function of nanoparticle volumes fraction is shown graphically in Fig-

ure 4.11. It is clear from the graph that when solid volume fraction increase, average Nusselt

number is also increases and this effect is more pronounced with higher values of magnetic

field inclination.

Figure 4.12 and Figure 4.13 illustrates the strong effect of solid volume fraction φ in various

cases, i.e., 0 (pure water), 0.02 and 0.04. In Figure 4.12, the effect of solid volume fraction

is discussed for Ri = 0.125 while other parameters has fixed values, i.e., Ha = 20, ψ = 45◦,

Pr = 6.1 and Re = 200. Average Nusselt number for the dominating forced convection

shows that curve falls down with an increase in heat generation parameter.

Figure 4.13 considers Ri = 1 (mixed convection) where Nusselt number decreases by increas-

ing the heat generation parameter.
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(a) Re = 20

(b) Re = 80

(c) Re = 200

Figure 4.2: Influence of Reynolds number on the streamlines distribution for ψ = 45◦,
Ha = 0, φ = 0.02, q = 5.

(a) Re = 20

(b) Re = 80

(c) Re = 200

Figure 4.3: Influence of Reynolds number on the isotherms distribution for ψ = 45◦,
Ha = 0, φ = 0.02, q = 5.
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(a) q = −10

(b) q = −5

(c) q = 0

(d) q = 5

(e) q = 10

Figure 4.4: Influence of q on the streamlines distribution for Re = 200, Ha = 20, ψ = 45◦.
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(a) q = −10

(b) q = −5

(c) q = 0

(d) q = 5

(e) q = 10

Figure 4.5: Influence of q on the isotherms distribution for Re = 200, Ha = 20, ψ = 45◦.
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(a) ψ = 0◦

(b) ψ = 45◦

(c) ψ = 90◦

Figure 4.6: Influence of inclination angle on the streamlines distribution for Re = 200,
Ha = 20, q = 10.

(a) ψ = 0◦

(b) ψ = 45◦

(c) ψ = 90◦

Figure 4.7: Influence of inclination angle on the isotherms distribution for Re = 200,
Ha = 20, q = 10.
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Figure 4.8: The effect of Re on average Nusselt number.
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Figure 4.9: The effect of q on average Nusselt number.

0 45 90

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

ψ°

N
u av

g

 

 

Figure 4.10: The effect of ψ on average Nusselt number.
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Figure 4.11: The effect of φ on average Nusselt number.
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Figure 4.12: The influence of φ on average Nusselt number for Ri = 0.125.
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Figure 4.13: The influence of φ on average Nusselt number for Ri = 1.



Chapter 5

Conclusion

In this dissertation, the analysis of laminar mixed convection of Cu-water nanofluid over

the backward facing step under the influence of an inclination angle of magnetic field and

internal heat generation/aborption is investigated. The governing dimensional PDEs are

converted into dimensionless PDEs by using dimensionless parameters and these equations

are discretized by Galarkin finite elements method. Different values for the heat generation

parameter, Reynolds number, magnetic field inclination and φ have been analyzed for the

temperature field and also for heat transfer rate while Pr is fixed at 6.1. Non-dimensional

quantities like velocity, temperature, Reynolds number and Nusselt number are shown graph-

ically and their numerical values are investigated.

We extended the work of Selimefendigil et al. [26], with an idea of internal heat genera-

tion/absorption parameters to incorporate as shown in energy equation. We discussed the

heat generation/absorption parameters considering some fixed values of it and the effect

of different parameter on it. The Numerical results for the dimensionless velocity and di-

mensionless temperature are studied and depicted graphically for the effect of appropriate

parameters.

The conclusions of the numerical simulations lead to the following points.

• Average Nusselt number increases as the Reynolds number increases for magnetic field

inclination range 0◦ ≤ ψ ≤ 90◦ while keeping all the other parameters constant.

• Heat transfer rate decreases with the increase in Hartmann number for magnetic field

inclination in specific range 0◦ ≤ ψ ≤ 90◦ while keeping all the other parameters

constant.

47
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• Average Nusselt number decreases with an increase in heat generation and increases

with an increase in absorption parameter and this effect is more pronounced in case of

nanofluid while keeping all the other parameters fixed.

• Heat transfer increases with an increase in the solid volume fraction and this effect is

more pronounced with higher values of inclinations angles of magnetic field while other

parameters kept constant.

• Average Nusselt number increases with the increase in magnetic field inclination while

keeping all the other parameters fixed.

5.1 Future scope

In future, this problem may be extended in many direction focusing on the following ideas.

• The impact of porous media.

• Perform non-stationary simulations of nanofluid in backward facing step.

• Apply the higher order finite elements in space.

• Apply the Galerkin discretization scheme for temporal discretization.
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